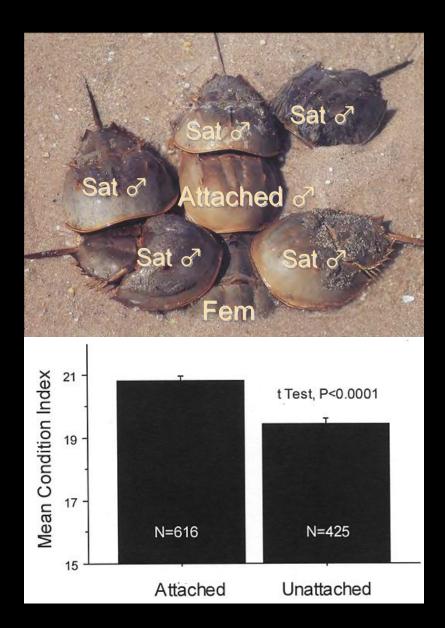
Horseshoe Crabs Gain from Mating with Multiple Males?

Sheri Johnson University of Otago, New Zealand & Jane Brockmann University of Florida, USA

Horseshoe Crab Reproduction

Mating System

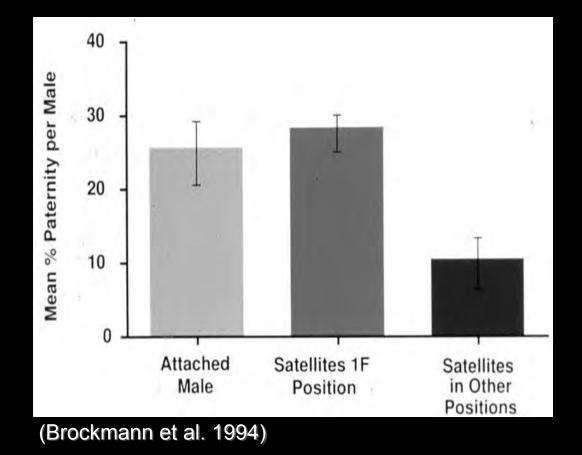

Operational Sex Ratio Is Usually Male Biased = competitive Males / 1F:

Limulus DE	1.9 – 5.9	
FL SJB	1.4 – 2.5	
FL SHK	1.1 – 6.0	States and the second
MA	1.6 – 5.3	
T. gigas	1.0 – 1.1	
T. tridentatus	1.0	
C. rotundicauda	1.1 – 1.4	

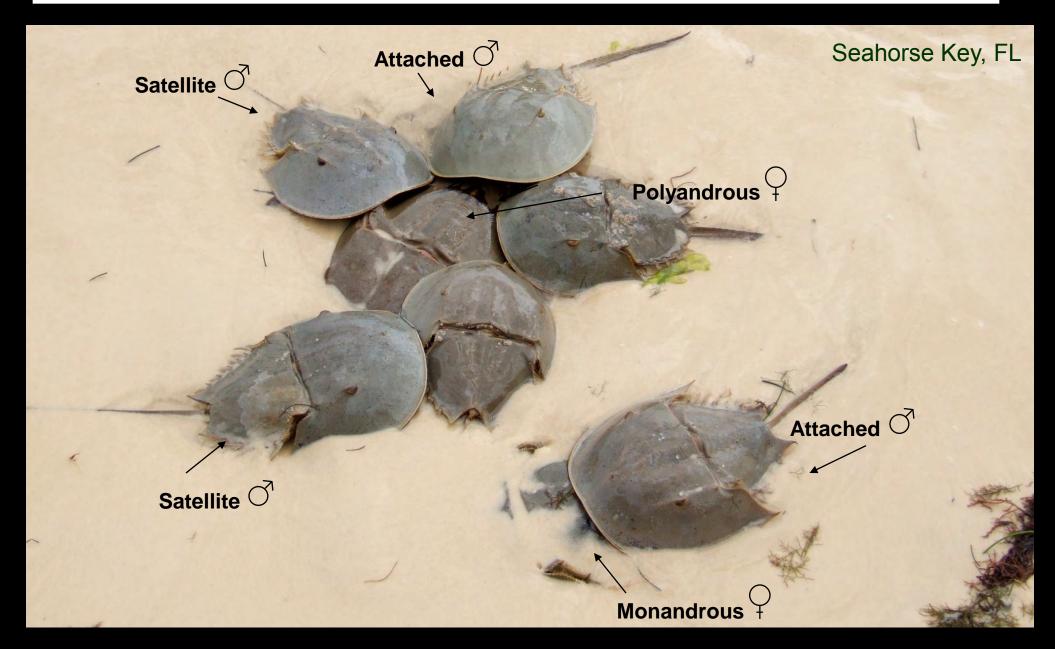
Spawning Limulus at Raccoon Island, Georgia

(Data from Rudloe 1980; James-Pirri et al. 2005; Chatterji 1994; Botton et al. 1996)

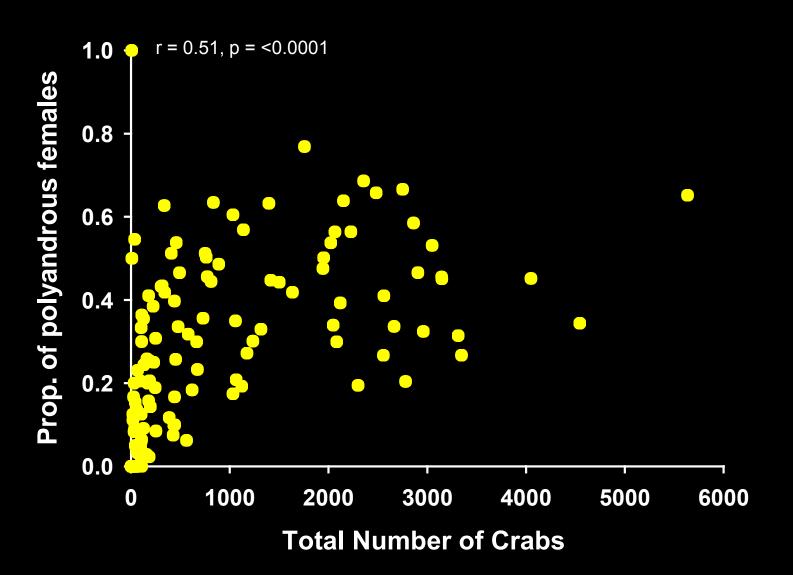
Mating Affected by Male Condition



Attached Males are


- Lighter in color
- More slime
- Less fouling
- Carapace, eyes and spines in better condition
- Younger than Unattached Males

Satellite Males Fertilize Eggs



Limulus Spawning

Frequency of Multiple Mating in Limulus

Seahorse Key, FL

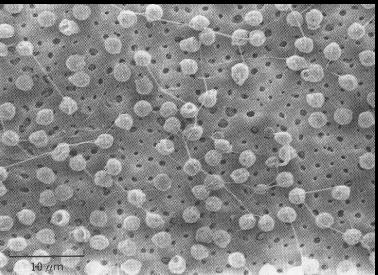
Consistency of Monandry/Polyandry in Limulus

	Original status	% Return same status (1996)	% Return same status (2000)
	Mono	69% (n=258)	82% (n=172)
Looking for marked	Poly	54% (n=71)	33% (n=27)

Limulus at SHK, FL

1996: χ^2 =12.74, p=0.0004 2000: χ^2 =2.23, p=0.135

Why Do Some Females Mate Multiply?


1. Multiple mating (polyandry) is costly for females. Results from male competition

Costs of Multiple Mating to Females

Why Do Some Females Mate Multiply?

Horseshoe crab management: Are satellite males 'superfluous'?

- 1. Multiple mating (polyandry) is costly for females. Results from male competition
- 2. Multiple mating is beneficial for females
 - 1. Direct benefits (unlikely)
 - 2. Ensures fertilization
 - 3. Genetic benefits
 - 1. Genetic Diversity
 - 2. Male Quality (good genes)
 - 3. Compatibility

Looking for Benefits/Costs to Polyandry

Exp. 1 Natural Variation

Mono Poly Poly Poly Mono Poly Poly Mono Mono Mono

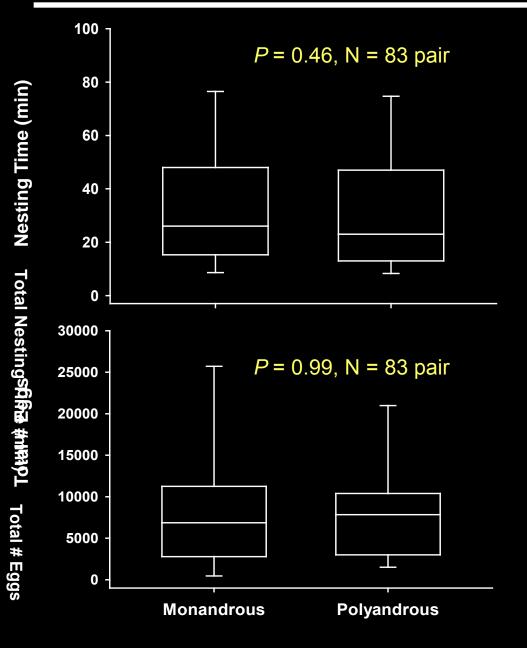
Exp. 2 Satellites Removed

Exp. 3 Satellites Added

Field Site - Seahorse Key, Florida

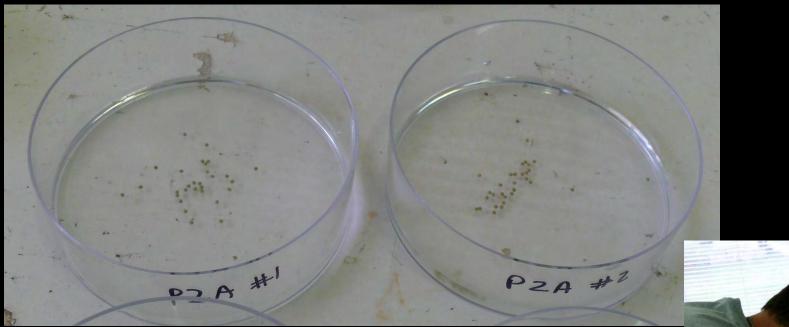
Field Methods

Satellites Removed

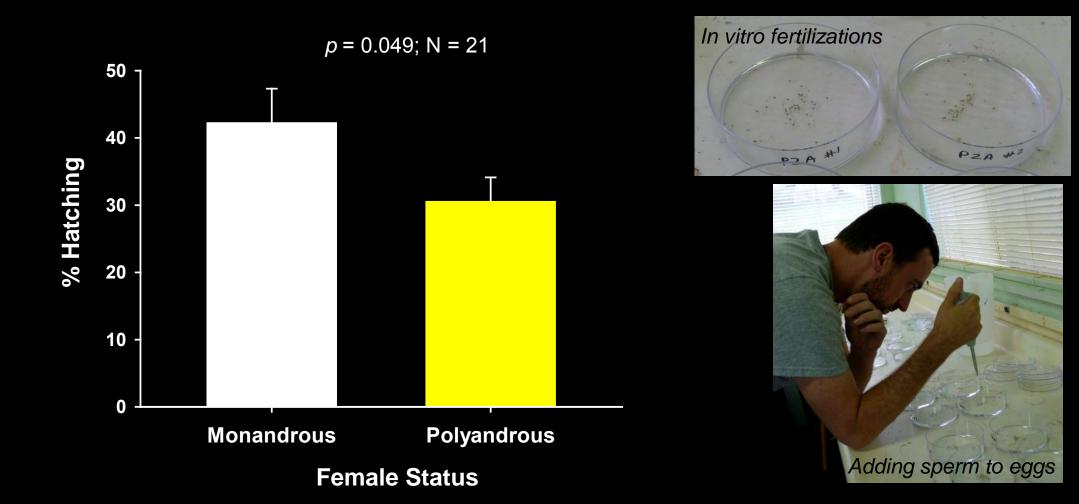

Satellites Added

Resistance to Polyandry in Limulus

Do Females Benefit from Mating Multiply?

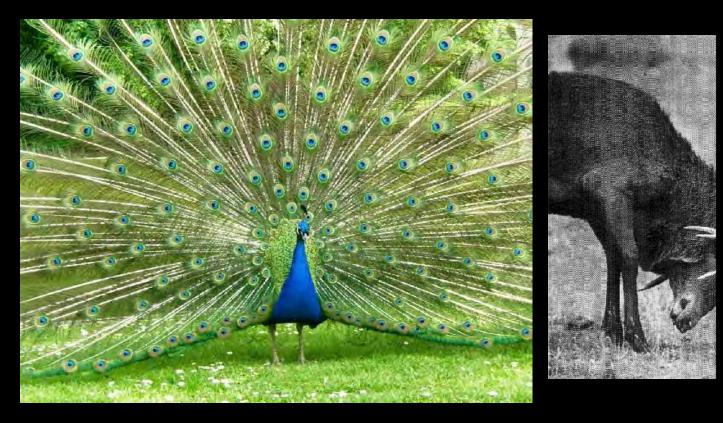

- Poly females with satellites removed: lay more eggs
- Mono females with satellites added: lay very few eggs
 - Costly
- Mono & poly do equally well
- Indirect benefit?

In vitro Fertilization Assays


In vitro Fertilization Assays

Is There Evidence for Benefits?

Do monandrous females have higher success with their attached males?


Why Do Some Females Mate Multiply?

Horseshoe crab management: Are satellite males 'superfluous'?

- 1. Multiple mating (polyandry) is costly for females. Results from male competition
- 2. Multiple mating is beneficial for females
 - 1. Direct benefits (unlikely)
 - 2. Ensures fertilization
 - 3. Genetic benefits
 - 1. Genetic Diversity
 - 2. Male Quality (good genes)
 - 3. Compatibility

Good Genes

Compatibility

Mate choice to ensure:

- prevention of inbreeding or selfing
- increased heterozygosity
- MHC compatibility
- avoid selfish genetic elements [i.e., transposable elements, segregation distorters, inherited bacterial symbionts (e.g., *Wolbachia*)].

Is There Evidence for Genetic Benefits?

North Carolina Design II (4 x 4)

	Male 1	Male 2	Male 3	Male 4
Female 1	2(m ₁ x f ₁)	2(m ₂ x f ₁)	2(m ₃ x f ₁)	2(m ₄ x f ₁)
Female 2	2(m ₁ x f ₂)	2(m ₂ x f ₂)	2(m ₃ x f ₂)	2(m ₄ x f ₂)
Female 3	2(m ₁ x f ₃)	2(m ₂ x f ₃)	2(m ₃ x f ₃)	2(m ₄ x f ₃)
Female 4	2(m ₁ x f ₄)	2(m ₂ x f ₄)	2(m ₃ x f ₄)	2(m ₄ x f ₄)

N = 11 sets (176 replicated families)

~30 eggs/dish; 10⁴ sperm ml⁻¹

Evidence for Genetic Compatibility

	df	%	%	Juvenile
		Hatched	Metamorphosed	Size
			@ 45 d.	
Male	33	3.33 (0.052)	5.71 (0.043)	3.86 (0.134)
Female	33	54.8 (<0.001)	30.1 (<0.001)	20.1 (<0.001)
Male x Female	96	7.03 (0.026)	14.3 (0.004)	13.6 (0.050)
Residual	176	34.7	49.6	62.4

Mean \pm SE \longrightarrow 42.8 \pm 1.42 6.18 \pm 0.71 5.05 \pm 0.015

Summary & Conclusions

 Multiple mating costly in terms of nesting success; BUT natural monandrous and polyandrous females do equally well.
> suggests there is some compensating benefit

 Hatching success higher for mono females with attached males than poly females with attached males.

suggests differences in genetic quality (good genes or compatibility) between the attached males

 Differences in offspring success, resulting from partial incompatibilities, provide a selective advantage to females that engage in polyandry.

This has the potential to offset the costs of mating multiply

Are Monandry & Polyandry Alternative Reproductive Tactics?

Why Do Some Females Mate Multiply?

Horseshoe crab management: Are satellite males 'superfluous'?

- 1. Multiple mating (polyandry) is costly for females. Results from male competition
- 2. Multiple mating is beneficial for females
 - 1. Direct benefits (unlikely)
 - 2. Ensures fertilization
 - 3. Genetic benefits
 - 1. Genetic Diversity
 - 2. Male Quality (good genes)
 - 3. Compatibility

Implications for for Management & Conservation

What does this mean for the asian species?

Limulus DE	1.9 – 5.9	
FL SJB	1.4 – 2.5	
FL SHK	1.1 – 6.0	
MA	1.6 – 5.3	
T. gigas	1.0 – 1.1	
T. tridentatus	1.0	
C. rotundicauda	1.1 – 1.4	

Males / 1F:

Spawning Limulus at Raccoon Island, Georgia

(Data from Rudloe 1980; James-Pirri et al. 2005; Chatterji 1994; Botton et al. 1996)

Estuaries and Coasts DOI 10.1007/s12237-011-9419-1

A Long-Term Study of Spawning Activity in a Florida Gulf Coast Population of Horseshoe Crabs (*Limulus polyphemus*)

H. Jane Brockmann · Sheri L. Johnson

Acknowledgements

~30 field assistants, undergraduates, graduate students, and high school students contributed to the collection of these data

Facilities Seahorse Key Marine Lab Department of Biology, UF

Permits

US Fish & Wildlife (Cedar Key National Wildlife Refuge)

Florida Fish & Wildlife Conservation Commission <u>UF Faculty</u> Marta Wayne Jamie Gillooly

<u>Otago Faculty</u> Neil Gemmell Shinichi Nakagawa

Di Mon Mongo (Mar New Zealand) agresearch CENTRE FOR REPRODUCTION AND GENOMICS