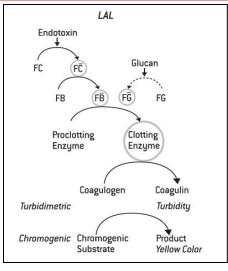
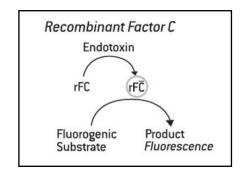
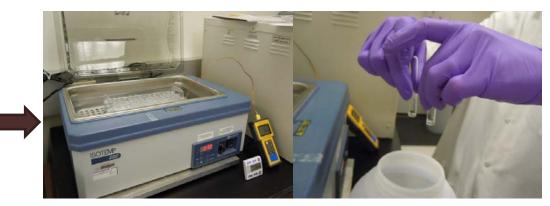
The recombinant Factor C Alternative Endotoxin Method


Primed for the Big Time



- What is rFC?
- Why implement rFC?
- Overview
- Lilly Validation / Equipment Strategy
- Data
 - Assay Performance
 - Validation
 - Comparability
- Summary

What is rFC?



- recombinant Factor C (rFC) is a recombinantly manufactured protein used for the detection of bacterial endotoxins
- Factor C activation is the first step in the Horseshoe crab clotting cascade and bypasses the factor G glucan false positive pathway
- End-point fluorescence is a technique to detect activation of the Factor C pathway
- Bacterial endotoxins detection by end-point fluorescence using rFC is a non-compendia alternative endotoxin method
 - The data presented herein supports the promotion of end-point fluorescence/rFC into the compendia bacterial endotoxins chapters

An Evolution of Pyrogen & Endotoxin Testing at Lilly

Rabbit Pyrogen Testing - Up to the mid 1980s

Gel Clot Testing – mid 1980s to mid-1990s

rFC – Present to the Future

Kinetic Photometric Testing – mid 1990s to present

- Our experience and data to date indicate that the use of rFC in the BET method is equivalent or superior to using LAL
- The method removes reliance on an animalsourced reagent, consistent with the 3 R principle: Replacement, Reduction, Refinement
- The method validation is relatively easy compared to other available microbiological alternative methods
 - Calculation values and units do not change

Guidance

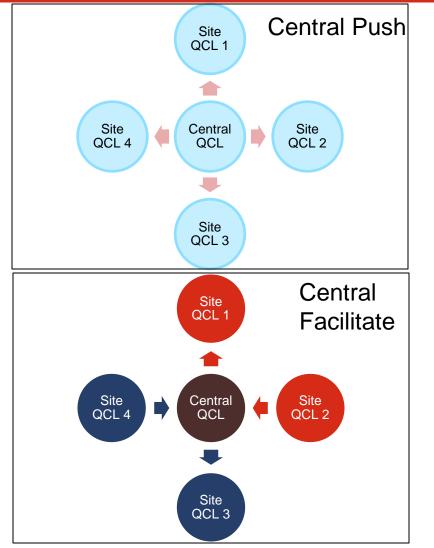
- Reducing Animal Impact
 - Internal Corporate Policy: Animal Use and Care Principles
 - European Union Directive 2010/63/EU
- Regulatory Guidance
 - 2012 FDA Guidance for Industry Pyrogen and Endotoxins Testing: Questions and Answers (Question 5)
 - Generally, compendia allow the use of appropriately validated non-compendia methods
 - USP <1225> Validation of Compendial Procedures (ICH)
 - Ph.Eur 5.1.10 Guidelines for using the test for bacterial endotoxins
 - Japanese Pharmacopoeia 16 General Notice 13

Literature

 Loverock, B. et. al. Stimuli to the Revision Process: A Recombinant Factor C Procedure for the Detection of Gram-negative Bacterial Endotoxin. 36(1), Jan-Feb. 2010

Lilly Status

- Method
 - The global method and associated infrastructure are active
 - 20 items are validated
 - 2 items (DP/DS) are transferred to QC labs
 - 13 items are ready to validate
 - 20+ items are in queue for method development


Sanctioning

 Alignment was gained at water and specification governance committees to implement the method

Equipment

- Platform equipment has been identified
- Equipment is qualified at 3 sites; 2 more in 2016; 2-5 in 2017
- Compendia

Validation and Transfer Strategy Infrastructure

- Validation
 - Occurs in central QCL or at a site QCL
 - Site validations may be promoted to the global method using global standard curve, labware, document formats, etc.
 - Implementation controlled by multi-site change control
 - Multiple items can be grouped in a single change control for efficiency
 - items can be transferred "a la carte"

Transfer

- Central QCL transfers or facilitates transfer of centrally or site-generated method to other site QCLs
- Simplified compared to compendia method verification
- One central validation; transfer consists of repeating limited validation parameters, with or without training
- 1 site invests more than typical; other sites less


Achieves common, global methods across the corporation

Validation Strategy

Parameter	Source	Data
Accuracy	USP 1225	Lilly Validation
Precision	USP 1225	Lilly Validation
Inhibition/Enhancement	USP 85	Lilly Validation/Every Test
pH Suitability	USP 85	Lilly Validation
Linearity	USP 1225	Published Data/Every Test
Range	USP 1225	Published Data/Every Test
Specificity	USP 1225	Published Data/Every Test
LOQ	USP 1225	Published Data/Every Test
Robustness	USP 1225	One-time Lilly study

- A USP Stimuli to the Revision Process article was published demonstrating equivalency and/or superiority to the existing USP kinetic methods per USP 1225
- Linearity, Range, Specificity and LOQ are leveraged
 - Not product-specific
 - Data generated on each test

Validation Cycle

 I/E assay evaluates multiple dilutions across the MVD

 Result may or may not be equal to LAL result but must be within the product specificaiton

Robustness

Parameter	Туре
Sensitivity Setting: nominal value, ± 3	Equipment
Sample/Reagent Volume: 100 µL ± 10% (100 µL of both sample and reagent ±10%)	Equipment
Incubation Time: 10 min., +10 min., +20 min.	Time
Time to Reagent Addition: 0 min., +10 and +20 min. at room temp., light-protected	Time

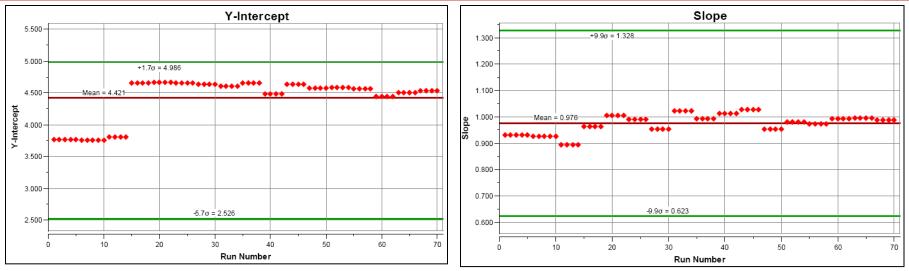
- Designed robustness based on extensive experience investigating common lab deviations
- Assay is robust at extremes of all studied parameters
- Improved Quality confidence

Parameter	Method Acceptance Criteria	Minimum Result From Study	Maximum Result From Study
Correlation coefficient	Within 0.980-1.000	0.999	1.000
Slope	Between 0.500 and 1.500	0.931	0.951
Y-intercept	Between 2.500 and 5.000	3.394	3.923
%CV of test replicates	NMT 25%	n/a	5%
0.5 EU/mL result	50-200%	110%	125%

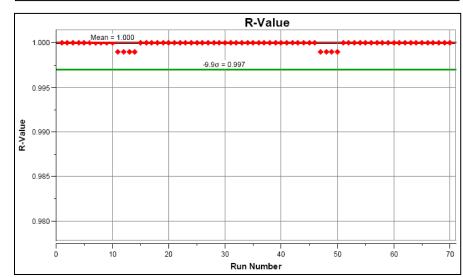
Equipment & Software

Lilly evaluated four different readers to date

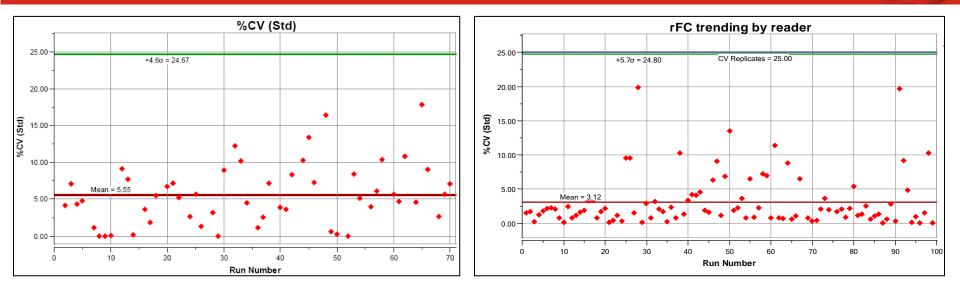
- Modified BioTek FLx800
- Molecular Devices M5e
- BioTek Synergy 2
- Modified BioTek H1 (Pyrowave[™])



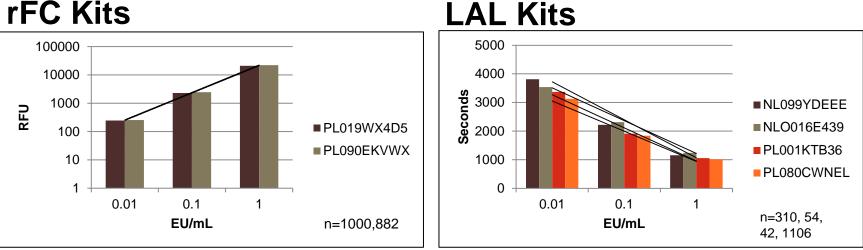
FLX800 / PyroWave Comparability


ltem	Lot	FLX800 %PPC	Pyrowave %PPC	ltem	Lot #	FLX800 %PPC	Pyrowave %PPC
	1	96	101	MAB, 3mg/mL	1	98	99
100 U/mL Insulin Solution	2	101	90		1	106	104
Solution	3	90	109	MAB, 10	2	107	113
100 U/mL Insulin	1	86	83	mg/mL	3	106	110
Mix Solution	2	97	91		1	103	104
	3	96	75	MAB, 16	2	107	101
100 U/mL Insulin	1	90	115	mg/mL		-	-
Solution	2	98	93		3	117	119
	3	101	113		1	102	93
100 U/mL Insulin	1	100	81	MAB, 80	2	93	99
Mix Suspension	2	99	84	mg/mL	3	105	95
<u>3 95 78</u>		1	95	118			
100 U/mL Insulin	1	93	107	MAB, 10	2		
Mix Suspension	2 90 100 ma/ml	2	102	103			
	3	90	96		3	99	120

 PPCs are comparable between the FLX800 and PyroWave


rFC Performance: 0.01λ Standard Curve

 Y-int, slope and linearity criteria are all operating well within vendor criteria (n>70 runs)


rFC Performance: 0.01λ Standard Curve %CV

- Curve %CVs are within vendor <25% criteria
 - This is not assay precision and reflects an inherently more sensitive fluorescence assay at the cost of a noiser baseline
- Averaged 5.5% CV on initial platform instrument; 3.1% CV on the new platform instrument
- No more "hot wells"; all wells react
 - A slow/fast well will manifest itself as a %CV fail

rFC Standard Curve **Kit-to-Kit Variation**

- 2 bulk rFC kits were used to date
 - The average standard curves between the 2 kits are comparable
- A recombinant protein manufactured by a validated process should yield more consistent curves compared to animal-sourced protein

Specificity: Case Study

Sample	Site1 LAL Result (EU/mL)	Site 2 LAL Result (EU/mL)	rFC (EU/mL)	GB Buffer +LAL (EU/mL)	PTS (pg/mL)					
1	0.141	0.0946	<0.08	<0.04	2265					
2	0.12	0.0712	<0.04	<0.04	1254					
3	0.105	0.0748	<0.02	<0.04	970					
4	0.132	0.157	<0.02	<0.08	3173					
5	0.176	0.109	<0.04	<0.08	2798					
LRW	RW Below detection limit									

- Low level endotoxin results reported at the end of a biotech drug substance process; confirmed at a second site
- rFC reported non-detect; confirmed by use of beta-glucan blocking buffer in LAL test, and orthogonal glucan detection test cartridge
- Factor C shown to not be susceptible to false positive factor G pathway

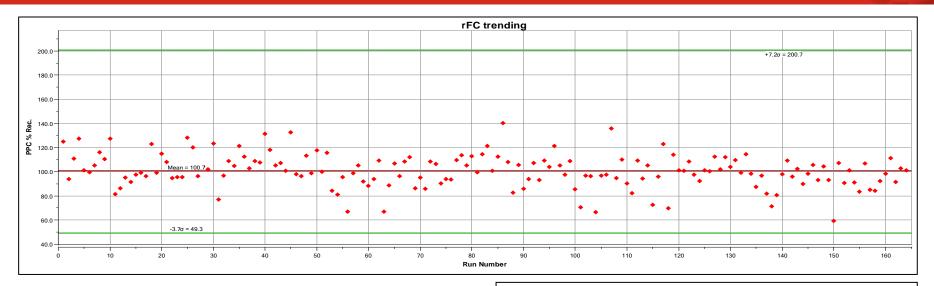
Water: Validation Results & Method Comparability

LAL	rFC1	rFC2	
<0.05	<0.05	<0.05	Resul
<0.05	<0.05	<0.05	Comp
<0.05	<0.05	<0.05	
<0.05	<0.05	<0.05	
148%	93%	88%	
146%	114%	89%	Spike
146%	112%	90%	Comp
154%	101%	95%	
	100%	117%	
compondia	116%	112%	Valida
compendia	4%	7%	
	12%	9%	
	<0.05 <0.05 <0.05 <0.05 148% 146% 146%	<0.05	<0.05

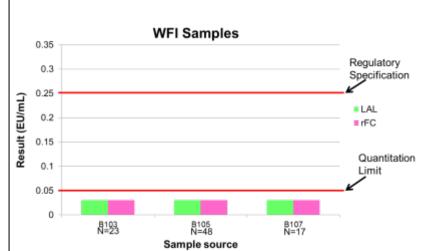
Result Comparability

Spike Comparability

Validation Results


- Comparable results observed with and without analyte
- Two rFC vendor sources validated

Water: 14 Day Hold Studies


Sample		LF	PS Recov	ery %			NOE Recovery %				
Gample	Day 0	Day 1	Day 4	Day 7	Day 14	Sample	Day 0	Day 4	Day 7	Day 14	
Batch A; Polystyrene	100%	97%	100%	95%	97%	Batch A;	100%	93%	89%	102%	
Batch B; Polystyrene	100%	97%	97%	97%	103%	Polystyrene Batch B;					
Batch C; Polystyrene	100%	92%	96%	99%	99%	Polystyrene	100%	97%	93%	107%	
Batch A; PETG	100%	92%	92%	99%	115%	Batch C; Polystyrene	100%	109%	95%	119%	
Batch B; PETG	100%	95%	105%	105%	109%	Batch D;	100%	4000/	4020/	1010/	
Batch C; PETG	100%	107%	103%	99%	107%	Polystyrene	100%	108%	103%	121%	

 Water sample hold times were demonstrated to 14 days with both LPS and an E. coli O55:B5 NOE

Water: PPC & Endotoxin Activity

- PPC result mean (100.7%) is at target in over 160 samples
- rFC returns comparable results to LAL
- Mechanism of action is nearly identical; rFC does not detect endotoxin that LAL did not detect

Monoclonal Antibody rFC / LAL Comparability

	Result (all batches)	%PPC (avg.)	%CV (avg.)	N
Buffer Tank Endotoxin rFC (EU/mL)	<0.21	91%	13%	14
Buffer Tank Endotoxin BET (EU/mL)	<1.00	111%	13%	8
			·	
Pre-Filtration Drug Product Endotoxin rFC (EU/mg)	<0.00	84%	8%	14
Pre-Filtration Drug Product Endotoxin BET (EU/mg)	<0.02	98%	15%	8
Final Drug Product Endotoxin rFC (EU/mg, Placebo EU/mL)	<0.00	94%	7%	13
Final Drug Product Endotoxin BET (EU/mg, Placebo EU/mL)	<0.01	98%	20%	7

 Methods are comparable in a monoclonal antibody drug product buffer, in-process test and final release test with and without the presence of analyte

Insulin rFC / LAL Comparability

	Insulin Solution			Insulin Suspension			Insulin Sus	pension
	LAL	rFC		LAL	rFC		LAL	rFC
Batch 1 Result (EU/mg)	<20 EU/100U	<20 EU/100U		<20 EU/100U	<20 EU/100U		<20 EU/100U	<20 EU/100U
Batch 2 Result (EU/mg)	<20 EU/100U	<20 EU/100U		<20 EU/100U	<20 EU/100U		<20 EU/100U	<20 EU/100U
Batch 3 Result (EU/mg)	<20 EU/100U	<20 EU/100U		<20 EU/100U	<20 EU/100U		<20 EU/100U	<20 EU/100U
Batch 1 PPC (%)	114%	90%		113%	100%		97%	93%
Batch 2 PPC (%)	115%	98%		118%	99%		104%	90%
Batch 3 PPC (%)	102%	101%		99%	95%		113%	90%
Accuracy High (%)		92%			90%			87%
Accuracy Low (%)		89%			88%			90%
Precision High (%)		6%			9%			11%
Precision Low (%)		9%			10%			19%
pH (units)		historical			historical			historical

 Methods are comparable in insulin drug products with and without the presence of analyte

Monoclonal Antibody rFC / LAL Comparability

	Monoclonal	Antibody DS	Monoclonal	Antibody DP
	LAL	rFC	LAL	rFC
Batch 1 Result (EU/mg)	<0.01	<0.01	<0.00883	<0.0042
Batch 2 Result (EU/mg)	<0.01	< 0.01	<0.0100	<0.0042
Batch 3 Result (EU/mg)	<0.01	<0.01	<0.0200	<0.0042
Batch 1 PPC (%)	143%	99%	72%	104%
Batch 2 PPC (%)	134%	95%	84%	96%
Batch 3 PPC (%)	155%	98%	67%	102%
Accuracy High (%)		107%		102%
Accuracy Low (%)		98%		102%
Precision High (%)		4%		12%
Precision Low (%)		10%		13%
pH (units)		7.73-7.97 (rFC)		7.73-7.91 (rFC)

 Methods are comparable in monoclonal antibody drug product and drug substance with and without the presence of analyte

Monoclonal Antibody 2 rFC / LAL Comparability

	Monoclonal	Antibody DS	Monoclonal	Antibody DP
	LAL	rFC	LAL	rFC
Batch 1 Result (EU/mg)	<0.01	<0.06	<0.02	<0.05
Batch 2 Result (EU/mg)	<0.01	<0.05	<0.02	<0.05
Batch 3 Result (EU/mg)	<0.01	<0.06	<0.02	<0.05
Batch 1 PPC (%)	99%	93%	100%	80%
Batch 2 PPC (%)	81%	96%	105%	93%
Batch 3 PPC (%)	71%	99%	73%	90%
Accuracy High (%)		90%		86%
Accuracy Low (%)		77%		80%
Precision High (%)		4%		4%
Precision Low (%)		5%		6%
pH (units)		7.77-7.90 (rFC)		7.80-7.97 (rFC)

 Methods are comparable in monoclonal antibody drug product and drug substance with and without the presence of analyte

Raw Materials rFC / LAL Comparability

	Dibasic Sodium Phosphate			Glycerin Synthetic	
	LAL	rFC		LAL	rFC
Batch 1 Result (EU/mg)	0.0423	<0.01		<0.005	<0.01
Batch 2 Result (EU/mg)	<0.0025	<0.01		<0.005	<0.01
Batch 3 Result (EU/mg)	<0.0025	<0.01		<0.005	<0.01
Batch 1 PPC (%)	55%	114%		116%	90%
Batch 2 PPC (%)	120%	117%		103%	95%
Batch 3 PPC (%)	124%	119%		108%	91%
Accuracy High (%)		111%			94%
Accuracy Low (%)		93%			90%
Precision High (%)		4%			8%
Precision Low (%)		3%			6%
pH (units)		7.31-7.37 (dilution)			6.78-7.05 (dilution)

 Methods are comparable in two raw materials with and without the presence of analyte

Conclusion

- For Lilly, moving to the end-point fluorescence technique using rFC is advantageous
- The end-point fluorescence technique using rFC is robust, accurate, precise and has been shown to be equivalent or superior to the compendia method
- The end-point fluorescence technique using rFC should be incorporated into the compendia method chapters